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For A satisfying a certain admissibility criteria, sufficient conditions are
obtained for the integral transform

1
Vi)E) = /0 o Py

to map normalized analytic functions f satisfying

1)

Reo? ((1 — a2 @ = 2)f ) + () — ﬁ) >0

into the class of convex functions. Several interesting applications for
different choices of A are discussed. In particular, the smallest value g < 1 is
obtained that ensures a function f satisfying Re(f'(z)+azf”(z)+
yz2f"'(2)) > B is convex.

Keywords: duality; convolution; univalence; convex functions; integral
transforms

AMS Subject Classifications: 30C45; 30C80

1. Introduction

Let A denote the class of analytic functions f in the unit disc D:={zeC : |z] < 1}
with the normalization f(0)=0=f"(0)—1, and let S denote the subclass of A
consisting of univalent functions in . A function f'€ A is starlike if it maps D onto a
starlike domain with respect to the origin, and f'is convex if f{[D) is a convex domain.
Analytically these are, respectively, equivalent to the conditions Re(zf"(z)/f(z)) > 0
and 14 Re(zf"(2)/f’(z)) > 0 in D. Denote by S* and CV the classes of starlike and
convex functions, respectively. A function f'€ A is close-to-convex if there is a starlike
function g and a real number « such that

w2f(2)
Re(e E) > 0.
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The class of all such functions is denoted by CC. For any two functions
fiz)=z4+az*+--- and g(z)=z+brz*+--- in A, the Hadamard product (or
convolution) of fand g is the function f* g defined by

(0@ =2+ by
n=2

For fe A, Fournier and Ruscheweyh [1] investigated starlikeness properties of
the operator

1
& =16 = [ "y )

over functions f'in the class
P(B) = {fe A:3IpeR with Ree?(f'(z) — B) > 0, ze D}.

Here, A is a non-negative real-valued integrable function satisfying the condition
fol A(H)dsr = 1. Ali and Singh [2] used the duality principle [3, 13] to find a sharp
estimate of the parameter 8 that ensures V,(f) is convex over P(B). In 2002, Choi et
al. [4] investigated convexity property of the integral transform (1) over functions fin
the class

/(2

Pu(B) = {fe/l: d¢p € R with Reei¢<(1 —oc)'7+ozf’(z) — ﬁ) >0, z€ [D},

a €R. The class P,(B) is closely related to the class R,(8) defined by
Re(B) = {fe A 3¢ eR with Ree®(f'(z) + azf”(z) — B) > 0, z¢€ [ED}.

It is evident that f'e R (B) if and only if zf” belongs to P(B).
Consider now the following class of functions that includes both classes P(8) and
Po(B). For >0, y>0 and B < 1, define the class

W) i={fe A: 3p R with

Re ¢ ((1 —a+ 2)/)‘/? + (@ =29)f"(2) +yzf"(2) — ﬂ) >0, ze 'D}-

2

Thus P(B)=Wg(1,0), Puo(B)=Wp(a,0), and R,(B)=Wg(1+2y,y). The class
Wela,y) is closely related to the class R(a,y,h) consisting of all solutions fe A
satisfying

'@ +azf"@) +y2f"(2) < h(z), zeD,

with A(z) :==hg(z) = (1 4+ (1 = 2B)z)/(1 — z). Here, g(z) < h(z) indicates the function g is
subordinate to 4, or in other words, there is an analytic function w satisfying w(0) =0
and |w(z)| <1 such that g(z) =h(w(z)), zeD. When ¢=0 in (2), it is clear that
J€R(a, y, hp) if and only if zf” belongs to Wy(«, y). Every function f'€ R(, y, h) for a
suitably normalized convex function /. has a double integral representation, which
was recently investigated by Ali et al. [5].
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Interestingly, the general integral transform V,(f) in (1) reduces to various
well-known integral operators for specific choices of A. For example,

M) =0+, > -1
gives the Bernardi integral operator, while the choice
(a1, -
AMp) = 1 -1, p>
(0 () Og ;) s oa>-Lp=0

yields the Komatu operator [6]. Clearly, for p=1 the Komatu operator is the
Bernardi operator.

For a certain choice of A, the integral operator V), in (1) is the convolution
between a function f and the Gaussian hypergeometric function Fa,b;c;z):=
2F\(a, b; ¢; z), which is related to the general Hohlov operator [7] given by

Hapo()) = zF(a, b; ¢: 2) % f(2).

In the special case @ =1, the operator reduces to the Carlson-Shaffer operator [8].
Here, »F(a, b; ¢; z) is the Gaussian hypergeometric function given by the series

(a)n (b )n n
Z (C)n(l)n

where the Pochhammer symbol is used to indicate (a),=a(a+1),_1, (a)o=1, and
where a, b, ¢ are complex parameters with ¢#0,—1,—-2,....

In a recent paper, Ali et al. [9] investigated starlikeness properties of the integral
transform (1) over the class Wg(, ). This article investigates convexity of the
integral transform V, over the class Wg(e,y) by applying the duality principle.
Specifically, in Section 3, the best value g < 1 is determined that ensures V, maps
Wel(a, y) into the class of convex functions CV. Necessary and sufficient conditions
are also derived that ensure V,(f) is convex univalent. In Section 4, simpler sufficient
conditions for V,(f) to be convex are derived. These are used in Section 5 in the
discussion of several interesting applications for specific choices of the admissible
function A. As a consequence, the smallest value 8 < 1 is obtained that ensures a
function f'satisfying Re(f'(z) + azf"(z) + yz°f""(z)) > Bis convex in the unit disc. The
results obtained in this section extend and improve earlier works by several authors.
The final section is devoted to extending the main convexity result to the generalized
integral operator of the form pz+ (1 —p)V,(f), p < 1. The best value g <1 is
obtained that ensures the latter operator maps Wg(a, y) into the class CV.

2. Preliminaries

We use the notations introduced in [9]. Let >0 and v > 0 satisfy
u+v=a—y and puv=y. 3)

When y =0, then u is chosen to be 0, in which case, v=a>0. When a =1+ 2y, (3)
yields u+v=14+y=1+puv, or (u—1)(1 —v)=0.

(1) For y > 0, choosing =1 gives v=1y.
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(i) For y=0, then u=0and v=a=1.

In the sequel, whenever the particular case o« =14 2y is considered, the values of u
and v for y > 0 will be taken as u=1 and v=y, respectively, while u=0 and
v=1=u in the case y=0.

Next we introduce two auxiliary functions. Let

= (v + D + 1),
Gun(2) =1+ ;TZ > “)
and
(D) =¢ () =1 _nTr o
V(@) = ¢,,(2) =1+ Z} v+ D+ 1)
dsds
f / )
(11— t”sl‘z)

Here, ¢u , denotes the convolution inverse of ¢, ,, such that ¢, , * ¢ =1/(1—-2).1If

y =0, then u =0, v=0, and it is clear that

41 I de
d(2)=1+ 2”2/7.
l/fo,() — no + 1 0 (l—laZ)z

If y>0, then v>0, >0, and making the change of variables u=1¢", v=s

result in
YV /=111
N ————dudv.
Yiulz) = vaf (1 — uvz)?

Thus, the function 1, , can be written as

l/v 1 1//4 1
/ / ———dudv, y>0,
(1 —uvz)
7, =0, a>0.
/0 (1 — ) v

Now let g be the solution of the initial-value problem

yea

1:”/J,,V(Z) =

l —
| 1o / =t (]1+—51)3ds, V>0,
) Iy 0 st
—1"q(t) = (6)
dr Ve 11
—t T y=0, a>0,
« (141

satisfying ¢(0) = 0. It is easily seen that the solution is given by

1/p—1, 1/v—1 1 —swt w
0= MV/ / " (1—|—swt)3 Z +un)(1 +vn)’ (7
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In particular,

1! 1
qy(t)z;/ s/l a +sl)2ds’ y>0, a=1+42y,
0

®)

1 ! -1
qu(2) =7t’l/o‘/ rl/“’lﬁdt, y=0, a>0.
a 0 (I+1)

3. Main results

Functions in the class Wg(a, y) generally are not convex. The following is the main
result that gives conditions for convexity.

THEOREM 3.1  Let >0, v=>0 satisfy (3), and let B < 1 satisfy

-1/2 !
Pt == [ roaa, ©)
1-8 0
where q is the solution of the initial-value problem (6). Further let
1
A (1) :/ )\(lx)dx, v >0, (10)
, xty

1
v—1-1/p
Hu,v(t) _ v/[ Av(x)x dx, y > 0 (H“ > 0’ V> 0)’

Ay(), y=0(u=0, v=a>0),

(11)

and assume that t'""A () — 0, and tl/“HM~U(Z)—> 0 as t— 0%, Let V, be given by (1)
and

, el =1 (12)
Then

1 —
Re / I, (ne/*! <h’(tz) — 1’3>dz >0, y>0,
0 (1 =+ l‘)
1 L (13)
Re | TIo.(¢ z”‘“(h’z —_>d1>0, =0,
/0 0a() )= y

if and only if F(z) = V,(f)(z) is in CV for f€ Wg(a, y). This conclusion does not hold for
smaller values of B.

Proof Since the case y=0 (u=0 and v=«) corresponds to Lemma 3(ii) in
[4, p. 121], it is sufficient to consider only the case y > 0.
Let

/()

H@E) = (1 —a+2y)—+ (=29 /") +rz/"(2).
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Since u+v=a —y and uv=y, then

Hz)=(0+y—(a )’))& +la@—y =S +r/")

U — u)ﬂ F (it v — w)f(2) + pvzf"(2).

With f(z) =z + Y 2, a,2", it follows from (4) that

H(z) =1+ i an1(nv + D(np + 12" = f1(2) * dp(2),

n=1

and (5) yields
f(2) = H(z) * Vyu(2).
Let g be given by

2(2) = H(z) - B
1-8
Since Re ¢g(z) > 0, the duality principle allows us to assume that
1+ xz
= =1 =1
=1, M=l D

Now, (15) implies that /"(z) =[(1 — B)g(z) + Bl * ¥,..(2), and (16) readily gives

1@ _ 1[(( —fs)”x‘ +ﬂ>dw'*1/f(2),

z

where for convenience, we write ¥ :=1,, .
If fe Wg(a, y), a well-known result in [3, p. 94] states that

1
FeS'——(Fxh)(z)#0, zeD,
z
where /1 is given by (12). Now FeCV if and only if zF’ € S*, and thus

0% L(F/) h2)

—l(F(z)*zh(z)) U x(z)Mdz* h()}

L) . fG)
—/1_Z LD o),

From (17), it follows that

0% [P are [ (0-p 1 pawyeo] en

1
:f IW) dt*h/(z)*[ / (( 1—pl +xw+ﬁ>dw} < ()
0 — 1z

(14)

(15)

(16)

(17)
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B ! , I 714+ xw , B
= /0 MOHK (tz)dt = (1 — ,3)[2/(; T ow dw + T ,8} *Y(z)

_ : / B 1 [1+xw
—(l—ﬂ)[/o k(l)h(tz)dt+rﬁ]*;f0 1+ywdw*¢(z).

It is known [3, p. 23] that the dual set of functions g given by (16) consists of analytic
functions p satisfying p(0) =1 and Re p(z) > 1/2 in D. Hence

] "z
0% - ,3)|:'/0 )»(ﬂ(é/(; h’(tw)dw)dz +%:| 11 + xz f U

<Re(l — ,6)|:/l A(l)( / " (tw)dw)dl—i— P ,3] *Y(z) > 5

<=Re(l — /3)|:/ k(l)( / n (tw)dw)dl +— gy 2(1 i| *Y(z) > 0.

Using (9), the latter condition is equivalent to

1 z
Re |:/(; A1) (é/o H (tw)dw — q(t)) dt] *Y(z) > 0.

From (5), the above inequality is equivalent to

n=0

- /m)( f f dn fw*h’(tz)—q(t))dt

Re / x(z)( / / h/(tzn”s“")dnds“—q(t))dt,
0 0 0
which reduces to

1 1 1 1
Re / A(z)[ / / —h/(zzuv)ul/”‘vl/ﬂ‘dvdu—q(z)}d»o.
0 o Jo MV

A change of variable w=ru leads to

2or Uv—1 1 /p—1 /v
Re i W (wzv)w v/E = dydw — pot Mg(r) |de > 0.
0 0 Jo

Integrating by parts with respect to ¢ and using (6) gives the equivalent form

1 1 1 _
Re/ Av(t)[/ h’(tzv)tl/”_lvl/"_ldv—tl/”_l/ stin= llid}dt>0.
0 0 0 (1 +st)’

Making the variable change w=vf and n =st reduces the above inequality to

1 ! i
1 —
Re / A ()=l |:/ W (wz)w!/*=1dw — / pt/Hl —'gdn]dl >0,
0 0 0 (I+mn)
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which after integrating by parts with respect to ¢ yields

! 1—¢
Re | TI ulll/"l<h’ 1z —>d1>0.
[ o s

Thus FeCV if and only if condition (13) holds.
To verify sharpness, let By satisfy

Po—1/2 _ / 1
= AMO)g(t)de.
Assume that g < By and let f'e Wg(a, y) be the solution of the differential equation
1
(1 —at 2 Dt @@ vro=pra-pite
From (14), it follows that
- 2(1 _ ﬂ) n+1

0= Y Gt e+

and
f(tz) - B) : n n+1

Thus

G() = Vi) =z + Z%
n=1

n+1

E

where 7, = fol A)r"dt. Now (7) implies that
Po—1/2_ [ (D)=,
=By _/0 Moa()dr = = ;(1 (1 + o)

This means that

(n+ 1)2(_1)nTH —1— 1 _ﬂ

(1 + pn)(1 +vn) 1 — B <0

(=G| _ _1+2(1—ﬂ)2

n=1

Hence (zG')(z)=0 for some ze€, and so zG’ is not even locally univalent in D.
Therefore the value of 8 in (9) is sharp. |

Remark 1 Theorem 3.1 yields several known results.

(1) When y=0, then u=0, v=c«, and in this particular instance,
Theorem 3.1 gives Lemma 3(ii) in Choi et al. [4, p. 121]. There the range
of « lies in [1/2, 1], whereas the range of « in Theorem 3.1 for this particular
case is a > 0.

(2) The special case @ = 1 above yields a result of Ali and Singh [2, Theorem 1(ii),
p. 301].
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Ifa=1+4+2y,then u=1and v=y for y > 0, while u=0 and v=a=1 for y=0.
In this instance, Theorem 3.1 gives the following result.
CorOLLARY 3.2 Let fe Wg(14+2y,y)=R,(B), ¥y =0, and let B < 1 satisfy
p—1/2 _
1-8
where q,, is given by (8). Further, let A, be defined by (10),

/ A (s)s]/y s, y>0,
y([) =

1
—Ax@%mm

(18)
MS) y=0,

and h be given by (12). Then

1
/ (t)(h(zZ) (+[)>dz>o

if and only if F(z)=V,(f)(z) is in CV. The conclusion does not hold for smaller values
of B.

4. Convexity criteria of integral transforms

The conditions stipulated in Theorem 3.1 can be cumbersome to use. A simpler
sufficient condition for convexity of the integral operator (1) is now given in the
following theorem. The following lemma of Fournier and Ruscheweyh [1, Theorem
1, p. 530] is required.

LemmA 4.1 Let A be integrable on [0, 1], and positive on (0,1). If A(1)/(1 — %) is
decreasing on (0, 1), then L,(CC)=0, where

faz) 1
iz (1+1)

1
mm:gﬂmﬂm )m(k&

and
LA(CO) :flencfc LA(f).

THeOREM 4.2 Let 11, , and A, be given as in Theorem 3.1. Assume that both 11, ,
and A, are integrable on [0, 1], and positive on (0,1). Assume further that 1> 1 and

A ()= 4 (1= 1/p)TT,,0(2)
-7

If B satisfies (9), and fe Wy(a, y), then V,(f)eCV.

is decreasing on (0, 1). (19)
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Proof Integrating by parts with respect to ¢ yields

! 1 —1¢
Re/ I, (¢ tl/"l(h/ iz —)dr
0 My ( ) ( ) (l + 1)3
1
— Re/ l'[,w(t)[l/lhl 9 <h(tz) _ ! 2>dt
0 a\ z 1+

— 5 1 h(1z) 1
B e =1/ _ 2 -
_ Re/(; ¢ <Av(t)t + <1 /L) Hu,v(l)>< 1z a1+ [)2>dt

The function r'/#~" is decreasing on (0, 1) when p > 1. Thus, the condition (19) along
with Lemma 4.1 yields

1
1 —1t¢
Re/ I ,V(t)tl/"‘l(h/(tz)—7>dt> 0.
o (1+ 1)}
The desired conclusion now follows from Theorem 3.1. [ |

Let us scrutinize Theorem 4.2 for helpful conditions to ensure convexity of V,(f).
Now for y > 0,

)
xl/v

dx.

1
M,.(1) = f APy and AL = /
t

t
To apply Theorem 4.2, it is sufficient to show that the function
Ay VR (1= 1/, (0 p(0)
11— T1-2

is decreasing in the interval (0, 1). Note that k(¢) > 0 and decreasing in the interval
(0,1) provided

k(1) =

)
L-1 P <0.

q(0) := p(1) +
Since ¢(1) =0, this will certainly hold if ¢ is increasing in (0, 1). Now

1_2

40 =210 - p o)

and

1 1 /

+ (1 . 2) <l - 1)11/”1/“1Av(t).
v U 1%

Thus, p"(t) — p'(¢) is non-negative if

11 A (1) ) 11 1
-2+ 2020w <;—;—2><——1>20. (20)




Downloaded by [Universiti Sains Malaysia] at 22:44 05 November 2013

Complex Variables and Elliptic Equations 1579

For u>1, condition (3) implies v> u > 1. Thus, condition (20) is equivalent to

t\ (1) 1 1
<24 ——— > > 1.
My Ty PR

These observations result in the following theorem.

THEOREM 4.3 Let A be a non-negative real-valued integrable function on [0, 1].
Assume that A, and T11,, given by (10) and (11) are both integrable on
[0, 1], and positive on (0,1). Under the assumptions stated in Theorem 3.1, if A
satisfies

A (1) < I 1

——= >u>1 21
O toy vzezl 20

then F(z)=V,(f)z) e CV. The conclusion does not hold for smaller values of B.

Remark 1 The condition p>1 is equivalent to 0 < y <a <2y +1.

Taking e =1+2y, y > 0 and u =1 in Theorem 4.3 yields the following result.
COROLLARY 4.4 Let A be a non-negative real-valued integrable function on [0, 1]. Let
JeWs(1 42y, ) =Ra(y), y€[l,00), and let B < 1 satisfy

p—-1/2
1-p

where q, is given by (8). Assume further that I, ,, and A, are integrable on [0, 1] and
positive on (0, 1). If A satisfies

1
Axm%mm,

tA (1) -3 l,
A1) Y
then F(z)=V,(f)z) e CV. The conclusion does not hold for smaller values of B.

In the case y=0 and o>1 (u=0,v=«a), an easier sufficient
condition for convexity of the integral operator (1) is obtained in the following
theorem.

THEOREM 4.5 Let A be a non-negative real-valued integrable function on [0, 1].
Assume that A, and Iy, given by (10) and (11) are both integrable on [0, 1], and
positive on (0,1). Under the assumptions stated in Theorem 3.1, if M(1)=0 and A
satisfies

WO - >0, a1, 22)
o

then F(z)=V,(f)(z) € CV. The conclusion does not hold for smaller values of B.

Proof From Theorem 3.1, it suffices to show that

1 —
Re / Moo(0)e/! <h/(tz) — %)dt >0, y=0.
0 (1+19
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Integrating by parts with respect to 7 yields

! 1 —¢
Re | TI altl/“_1<//t —7>dz
[0 a0 (W) —

! 1 h(t 1
T K AN (o ¥ G

1/a—1

The function ¢ is decreasing on (0, 1) when « > 1. Thus, the condition

V) + (1 = 1) Au()
-

is decreasing on (0, 1)

along with Lemma 4.1 will yield

1 J—
Re / no,a(z)zl/“*(h’(zz)— ! ’3>dz>0
0 (1+1)

Let p(1) =k()/(1 — %), where k(f)=t"""“A(t) + (1 — 1/a) Ao(7). Taking the loga-
rithmic derivative of p and using the fact that p(r) > 0 for «>1, the condition
P'(1)<01in (0,1) is equivalent to the inequality

-7
2

Clearly ¢(1)=0 and if ¢ is increasing in (0, 1), then p will be decreasing in (0, 1).
Direct computations show that ¢'(f) > 0 provided (:~'k'(¢))’ > 0. Since

q(1) = k(1) + 1K' (1) <0.

) = (0 - L1 0)

the desired result follows from (22). [ |

5. Applications to several integral transforms

In this section, various well-known integral operators are considered, and conditions
for convexity for fe Wg(«, y) under these integral operators are obtained. First let A
be defined by

M= +0of, ¢>—1.
Then the integral transform
1
F(2) = Vi) = (1 +¢) f fd, > 1 (23)
0
is the Bernardi integral operator. The classical Alexander and Libera transforms are

special cases of (23) with ¢ =0 and ¢ =1, respectively. For this special case of A, the
following result holds.



Downloaded by [Universiti Sains Malaysia] at 22:44 05 November 2013

Complex Variables and Elliptic Equations 1581

THEOREM 5.1 Letc>—1,0<y<a=<1+42y, and B < 1 satisfy

B—1/2
1-p
where q is given by (7). If fe We(a, y), then the function

1
=—(c+ 1)/0 “q(r)dt,

1
mm@=a+oAfVWw

belongs to CV provided

1 1
c<24+———, v>=pu=>1l
n o

The value of B is sharp.

Proof With A1) =(1+ ), then tA'(¢)/AM(f) = ¢, and the result readily follows from
Theorem 4.3. |

When =142y, y > 0, and =1, Theorem 23 yields the following result.
COROLLARY 5.2 Let —1 <c<3—1/y, y€[l,00), and B < 1 satisfy
B—1/2
1-p
where q,, is given by (8). If fe Wg(1 42y, y) =R, (B), then the function

|
=—(c+1) /0 1q,(n)dt,

1
mm@=a+q4mem

belongs to CV. The value of B is sharp.

The case ¢=0 in Theorem 5.1 yields the following interesting result, which we
state as a theorem.

THEOREM 5.3 Let 0 < y<a<1+42y. If Fe A satisfies
Re(F'(z) + azF"(z) + yz*F "(2)) > B
inD, and B < 1 satisfies

1/ 2 / q(H)dt,

where q is given by (7), then F is convex. The value of B is sharp.

Proof 1t is evident that the function f=zF belongs to the class

Weola,y) = {fE.A : Re((l —(x—i—Zy)&—I—(a 29 f (z)—l—yzf”(z)) > B, ze[[D}.

Thus

U (s
F(z):/of(;)dt
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The conditions on « and y imply that 1 <u <v. Thus the result now follows from
Theorem 5.1 with ¢ =0. It is also evident from the proof of sharpness in Theorem 3.1
that the extremal function in Wg(«, y) indeed also belongs to the class Wg (e, ). B

Example 5.4 1f y=1, a =3, then u=1=v. In this case, (7) yields =(1 —21n2)/
2(1 —In2)=—0.629445. Thus

Re(f'(2) +32/"(2) + 2°/"(2)) > B= f€CV.
THEOREM 5.5 Letb>—1,a>—1and 0 < y<a<2y+1. Let B < 1 satisfy

1
== [ oo
where q is given by (7) and
(1 — 1779
A(Z):[(a+l)(b+l)ﬁ, b +#a, 24)
(a+ 1)*1og(1/1), b =ua.

If fe Wg(a. y), then
1
— 0

Grla,b; z) = (25)

1
(a+ 1) / “og(1/0) f(1z)d1, b=a,
0
belongs to CV provided
a§2+l—7, v>pu > 1. (26)
"

The value of B is sharp.

Proof 1t is easily seen that fol A(t)dt = 1. There are two cases to consider. When
b +# a, then

() y (b—a)y—

O 1 —¢h—a =
The function A satisfies (21) if

b—ayt—¢ 11
a—%§2+ﬁ—;, vzpzl 27

Since 7€(0,1), the condition b>a implies (b—a)® /(1 —""% >0, and so
inequality (27) holds true whenever a satisfies (26). When b < a, then (a—b)/
(t“""—=1) < b—a, and hence a — (b — a)t" /(1 — 1*~%) < b < a, and thus (27) holds if
a satisfies (26).

For the case b =a, then

() 1
w0~ log(1/n)
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Since ¢ < 1 implies 1/log(1/7) > 0, condition (21) is satisfied provided a satisfies (26).
This completes the proof. u

The simpler condition (21) can also be applied to the choice
(1 +ay ( I
M) = ———1| log| - , a>—1,p>0.
I(p) t

The integral transform Vj in this case takes the form

1 p ol 1 p—1

Vi()(z) = 1+ a) / <log<—)> " (tz)dt, a>—1, p=>0.
I'(p) Jo t

This is the Komatu operator, which reduces to the Bernardi integral operator when
p=1. For this A, the following result holds.

THEOREM 5.6 Leta>p—2>—1and 0 <y<a<2y+1. Let B < 1 satisfy

1 —1
p-1/2_ (+ay ta<log<%))” S,

1-8 () Jo
where q is given by (7). For fe Wg(a, y), the function
. (1+ay 1( <1>)P—1 i
®,(a;2) xf(z) = log( — (7 f(tz)dt (28)
a2+ /) =50 | (1og(5 £
belongs to CV provided
a2+ 1 uzust (29)
JTRY

The value of B is sharp.

Proof Brief computations show that
00 _ (=1
A1) log(1/1)’

Since log(1/f) > 0 for t€(0,1), and p>1, condition (21) is satisfied whenever «
satisfies (29). |

We next apply Theorem 4.5 to the case A(1) =0 as shown by the following two
theorems.

THEOREM 5.7  Suppose a > —1, b > —1, a>1 are related by

(1) —1<a<0and a=hb, or
2) —-l<a<0and -1 <a<b=<l+l/a.

Let B < 1 satisfy
p—1/2
1-8

where q and ) are given by (8) and (24), respectively. If f'€ Wg(a,0) ="Ppg(cx), then
Gla, b; z) defined by (25) belongs to CV. The value of B is sharp.

1
/0 M0,
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Proof To apply Theorem 4.5, it suffices to verify inequality (22) for A defined by
(24). Tt is seen that

(@a+Dd+1)

b—a
M) =

1
(a+ 1)2(—1 —i—alog(;))l“‘l, b=a,

(a+ DO +1)
b—a

(a+ 1)2(1 —2a+ a(a — l)log(;>>t"1, b= a.

“Na—bt""%, b>a,

and

“MNala—1)=bb -9, b>a,
(1) =

Case i Let b=a > —1. Substituting the expression for A" and A" in (22) yields the
equivalent condition

a10g<1>(a—1— l) + <—2a+l+ 1) > 0.
t o o

This clearly holds for € (0, 1) whenever —1 < ¢ <min{0, I4+1/a, (1+1/)/2} =0.

Case ii Let b>a>—1 with ae(—1,0] and —1 <b<1+41/a. In this case,
condition (22) is equivalent to ¥ (a) > ¥,(b), where

Yi(a) = ala — 1)t — 1at".
o

For a fixed ¢,

V(@) = t“<2a Si-log log<l> + a<1 +1) log<1)>,
o t o t

that is, ¥/(a) < 0 for a € (—1,0). Thus, ¥(a) is a decreasing function of a for each
fixed 7 € (0, 1). In particular, for b > a with b € (—1,0) and a € (—1, 0), inequality (22)
holds. When b >a with 0 <b<1+41/a, then ¥ (a)>,(0)=0 for each fixed
te(0,1). For0<b<1+1/a,

Vi(b) = bzb<b —1- 1) <0.

o

It follows then that v,(a) >0 > ¥ «b) holds for each fixed 7€ (0, 1). Thus, inequality
(22) holds for b > a > —1 with ae(—1,0land 0 < b <1+ 1 /. |

Remark 1 The conditions » > —1 and a > —1 in Theorem 5.7 yield several
improvements of known results.

(1) Taking y=0 and a>1 in Theorem 5.7 leads to a result extending
Theorem 3.4 obtained in [10, p. 12] for the case a«€[1/2,1]. When a=1,
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the range of b there lies in (—1, 0], whereas the range of » in Theorem 5.7 lies
in the larger interval (—1, 2].

(2) a=1 above leads to improvement of a result obtained by Ponnusamy and
Ronning [11, Corollary 3.2]. There the parameters b > @ > —1 must satisfy a
fairly complicated equation to deduce G/(a, b; z) is starlike of order 1/2. In our
present situation, the conditions on the parameters a and b are simpler to
infer convexity.

(3) Fora=1, y=0,a=—nand h=—n+2, Theorem 5.7 reduces to Corollary 1
[2, p. 302] and Corollary 1 in [12, pp. 915-916, (y =0)].

Now let @ be defined by ®(1 — 1) =14+ >, by(1 — )", b,>0 for n>1, and

D) = KN (1 = 0P (1 — 1), (30)
where K is a constant chosen such that fol AMde=1.

THEOREM 5.8 Let a,b,c >0 and a>1. Let B < | satisfy
P12 g
1-8

where q is given by (8), and K is a constant such that Kfol (1 — Z)C_“_bCI>(1 —n=1.
If feWg(a,0), then the function

1
/ P71 = 0P (1 — ng(r)dt,
0

1
Vi) =K / 721 = (1 — ) f(t2)de
0
belongs to CV provided

c>a+b+1 and 0<b<1l.

The value of B is sharp.

Proof As in the earlier proof, it suffices to verify inequality (22). Consider A given
by (30). Direct computations show that

W) = KiP=2(1 — gye=eb=! (((b (1 =1) = (c—a—by)d(1 — 1) — (1 — HP'(1 — x)),
and
00 = K21 = 0 2 (0 = )b = (1 = 1)
—2b—1)c—a—bl =)+ (c—a—blc—a—b—1)A)d(1 — 1)
+(20c —a— byt — 2 — 1)(1 = )il — HO'(1 — 1) + 2(1 — *@"(1 — z)).
Thus, (22) is satisfied provided

() = (1 — HX(0) + (1 — D' (1 — )Y (1) + (1 — 1)*D"(1 — 1) > 0,
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where

<H0=Uf4f@—1(—é+b—2>—@—a—le—ﬂ<—$+2h—%
+(c—a—=b)(c—a—b—1)7r,
HO:Z@—a—bﬁ+U—JKé—%+&)

Since ®(1 — 1) =1+ X2,b,(1 —1)", b,>0 for n> 1, the functions ®(1 — 1), ®'(1 — 1)

n=1
and ®"(1 —¢) are non-negative for 7€ (0, 1). Therefore, it suffices to show

X(t)>0 and Y(¢) >0,

and these evidently hold provided c>a+b+1and 0 < b <min{l,2+ 1/, 2+ 1/a)/
2V =1. |

Remark 2 Fory=0and «> 1, Theorem 5.8 extends Theorem 3.1in[10, p. 9, (u=0)]
for ¢ €[1/2, 1]. When =1, the range of b obtained in [10] lies in the interval (0, 1/2],
whereas the range of b obtained in Theorem 5.8 for this particular case lies in (0, 1].

Remark 3 As shown in [10], choosing
d(l—-H=Fc—a,l—ac—a—-b+1;1—1)
gives

I'(c)

K= rarorc—a=b+1)

In this case, V,(f) reduces to the Hohlov operator given by
VilIN2) = Hap o (f)2) = zF(a, b; ¢; 2) % f(2)

1
=K/z“%y—ﬁﬂ%ﬂp—ml—mc—a—b+n1—&ﬂmﬂn
0

wherea > 0,5 >0and c—a—b+1 > 0. In particular, fora=1,b=aand c=a+b,
Theorem 5.8 yields Corollary 2 in [2, p. 302] and Corollary 2 in [12, p. 916, (y =0)].
In the case y=0 and o> 1, Theorem 5.8 extends Theorem I in [4, p. 122] and
Theorem 3.2 in [10, p. 11]. When o =1, the range of b obtained in [10] lies in the
interval (0, 1/2], whereas the range of » in Theorem 5.8 lies in (0, 1]. This result
improves Theorem 1 as well obtained by Choi et al. [4] for the particular case o= 1.

Choosing now [10, Theorem 3.3, p. 12]

log(1/1)\"""
=)

D1 —1) = (
in Theorem 5.8 yields the following interesting result, which we state as a theorem.
THEOREM 5.9 Let —1 <a<0,a>1and p>2. Let B < 1 satisfy

B—1/2  (L+a ' . 1\
=p T b’ <l°g?> awdr
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where q is given by (8). If fe Wg(,0), then the function ®,(a; z) * f(z) defined by (28)
belongs to CV. The value of B is sharp.

Proof Choose

log(1/0)\"™!
o1 — 1) = <0g( /t)) ’
1—1¢
¢c—a—b=p—1and b=a+1 so that A defined by Equation (30) takes the form
V4
M) = KA — p-'o( — 1), K=UtD
I'(p)
The desired result now follows from Theorem 5.8. [ |

Remark 4 For the particular case =1, this result improves Theorem 3.3 by
Balasubramanian et al. [10], where the range of a obtained there has been improved
from (—1,—1/2] to (—1,0].

6. Starlikeness and convexity of a generalized operator
In [2], Ali and Singh generalized the operator (1) to the case

“dixf(z), p<l. ()
1z

1 —pt

1
VNG = oz + (0 =i =2 [ 200

In this final section, Theorem 3.1 is generalized to obtain conditions on A such that
Vi(f) € 8* or CV for fe We(a, y). The proofs are similar to the proof of Theorem 3.1,
and are therefore omitted.

THEOREM 6.1 Let 1, , and A, be given as in Theorem 3.1. Assume that both I1,,
and A, are integrable on [0, 1], and positive on (0,1). Assume further that p < 1 and

1 [ 1 - g(z)>
za—ma—m‘ﬂkm< 2y )4

where g is the solution of the initial-value problem

) 1 /p—1
= vl / s . ds, y>0,
v 0o (1+4s1)

7 fl/a=1
a(l 41

feA. Let B satisfy

vt 1 g =

dr (32)

y=0, >0,
with g(0)=1. Then

! 1
Re/ I, (0! (@ — 2>dz >0, y>0,
0 iz 1+

! 1
Re / oo ()% (@ — —2>dt >0, y=0,
o tz (149
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if and only if Vs(f) is in 8* for fe Wg(a, y). The conclusion does not hold for smaller
values of pB.

THEOREM 6.2 Let 1, , and A, be given as in Theorem 3.1. Assume that both 11, ,
and A, are integrable on [0, 1], and positive on (0, 1). Assume further that p < 1 and

fe A Let B <1 satisfy

! = l 33
S —— —q(H)d
ST = [, M0 =g (33)

where q is the solution of the initial-value problem (6). Then
Re / 1 I, ,()r'/r! (h’(tz) — i)dz >0, y>0
0o " (140’ ’ ’

1 1—
Re / oo (1)2!/! (h/(zZ) — %)dt >0, y=0,
0 (1 + l)

if and only if Vi(f) is in CV for fe We(a, y). The conclusion does not hold for smaller
values of B.

Remark 1 Theorems 6.1 and 6.2 yield several known results.

(1) Taking y=0 and « > 0, Theorem 6.1 leads to Theorem 2.4 obtained by
Balasubramanian et al. in [10, p. 6, (u=0)] for the case « €[1/2,1], and to
Theorem 2 obtained by Ali and Singh in [2] and Theorem 3 in [12, p. 916] for
the case y=0, a=1.

(2) Taking y=0 and « > 0, Theorem 2.5 leads to Theorem 2.5 obtained by
Balasubramanian et al. in [10, p. 7, (u=0)] for the case @ €[1/2,1], and it
reduces to Theorem 3 obtained by Ali and Singh in [2] in the case y =0, a = 1.

For the case =1+ 2y, Theorem 6.2 reduces to the following result.

CoROLLARY 6.3 Let fe Wy(1+2y,y)=R,(B), y=0, and let p <1 satisfy (33).
Assume A, is defined by (10) and I1,, is defined by (18). Then

/1 (t)(h(tz) i+ ))dt>0

where h is given by (12), if and only if F(z) =V, (f)(2) is in CV. The conclusion does not
hold for smaller values of B.

Choosing A(f) = (1 + ¢)t°, Theorem 6.2 leads to the following corollary.

COROLLARY 6.4 Letc>—1,y>0, p<1and g <1 satisfy

1
2(1 = p)1 = p)
where q is given by (6). If fe Wy, y), then the function

1
=a+a£#u—mmm

1
W@@ZM+UﬂW+@AfVWW
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belongs to CV provided

The value of B is sharp.

Additionally, using the sufficient condition (4.4) in Ali et al. [9, p. 816] leads to
the following result.

COROLLARY 6.5 Let¢>—1, p<1 and B <1 satisfy

1 3 b(1—g0
2(1—ﬂ)(1—p)_(1+6)/o [( > )d[’

where g is given by (32). If fe We(a, y), then the function

1
V()& = pz + (1= p)(1 + ) / 1 (t2)de
0
belongs to §* provided
1
l+—, u=1(>0),
w
3—1, y =0, ae(0,1/3]1N[1,00).
(07

The value of B is sharp.
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